The purpose of this project was to convert the existing at-grade crossing of Brazoria County Road 56 (CR 56) and State Highway 288 (SH 288) into a diamond interchange that includes a new overpass bridge and providing access to the newly developed Meridiana Development. Coordination with TXDOT, area landowners, utility companies, and Brazoria County was integral in obtaining approval and acceptance of the project. The main design challenge for this project was to accommodate double intersections on the west side of SH 288 to tie into existing access roads with two-way traffic and a new southbound on-ramp within a close proximity. EHRA coordinated with TxDOT throughout the project from preliminary concepts for the intersection and bridge through final design and construction. Each component of this project was designed in accordance with TxDOT standards and criteria.
Project totaled 640 acres including 1256 Residential Lots. EHRA designed, created construction plans, publicly bid and preformed Construction management.
In 2006, Caldwell Companies sought to create Towne Lake as a community where residents and services could be connected by water. Their vision included boat docks and marinas augmenting traditional walking trails to navigate a vibrant residential community. EHRA was the perfect partner to take Caldwell Companies’ vision and create this livable suburban oasis.
Identified as a top priority during the development of the District’s Parks Master Plan, this portion of trail was the first phase of over two miles of planned trails to provide connectivity and recreation for District residents.
EHRA offered its Landscape Architectural services to complete a Parks and Trails Master Plan for the District.
Concrete is, after water, the second most widely used material on the planet. MIT undergraduate students have found that, by exposing plastic flakes to small, harmless doses of gamma radiation, then pulverizing the flakes into a fine powder, they can mix the plastic with cement paste to produce concrete that is up to 20 percent stronger than conventional concrete.
The team exposed various batches of flakes to either a low or high dose of gamma rays. They then ground each batch of flakes into a powder and mixed the powders with a series of cement paste samples, each with traditional Portland cement powder and one of two common mineral additives: fly ash (a byproduct of coal combustion) and silica fume (a byproduct of silicon production). Each sample contained about 1.5 percent irradiated plastic.
Once the samples were mixed with water, the researchers poured the mixtures into cylindrical molds, allowed them to cure, removed the molds, and subjected the resulting concrete cylinders to compression tests. They measured the strength of each sample and compared it with similar samples made with regular, nonirradiated plastic, as well as with samples containing no plastic at all.
They found that, in general, samples with regular plastic were weaker than those without any plastic. The concrete with fly ash or silica fume was stronger than concrete made with just Portland cement. And the presence of irradiated plastic strengthened the concrete even further, increasing its strength by up to 20 percent compared with samples made just with Portland cement, particularly in samples with high-dose irradiated plastic.
Source: Science Daily