EHRA completed preliminary engineering, phase one environmental site assessment and schematic development for the widening of Northpark Dr. between US 59 and Woodland Hills Dr. EHRA also provided program management, drainage analysis and design, traffic engineering, environmental documentation and schematic design for the roadway, as well as grade separation at the Loop 494/UPRR railroad crossing.
EHRA conducted traffic operations and access management studies for the Northpark Dr. corridor. This corridor is approximately 2.2 miles long and has major signalized and unsignalized intersections and driveways that access various subdivisions and industrial developments. These studies laid the groundwork for the widening of Northpark Dr. from a four-lane boulevard cross-section to a six-lane boulevard complete street. The new street design includes low impact development drainage, conventional drainage, a grade separation at the UPRR crossing with mechanically stabilized earth retaining walls, two at-grade crossings for bi-directional frontage access, reconstruction of two concrete bridges over a diversion channel, intersection improvements, a roadway-adjacent multiuse path and traffic signal improvements.
Drainage analysis and design included hydrologic and hydraulic studies of both existing and proposed conditions to demonstrate that proposed project components would not adversely affect the 100-year floodplain in the area. The roadway and traffic designs contained horizontal and vertical alignments, cross-sections, plan and profile, sidewalk and bicycle accommodations, intersection layouts, traffic control plans and signing and pavement markings.
As the program management firm, EHRA coordinated with TxDOT, UPRR, the City of Houston Council District E, COH Planning and Development Department, COH Public Works and Engineering Department, Montgomery County, Harris County, HCFCD and area residents throughout the project.
EHRA assisted with the district creation of Montgomery County Municipal Utility District No. 126 to accommodate a ±329 acre master planned community located in northern Montgomery County in the City of Conroe, south of League Line Road, west of Longmire Road, and adjacent to Lake Conroe.
The facility features an activated sludge process system. Additionally, the facility is equipped with an emergency standby diesel generator.
EHRA planners, hydrologists and landscape architects worked together to propose an alternative use for the space, re-developing the basin into an amenity pond. EHRA carefully selected native plant materials for both their ability to survive in the harsh conditions of the basin as well as providing filtration for improved storm water quality.
EHRA was selected by the client to provide engineering design and to serve as District Engineer for the 2,400 acre Towne Lake Development. Our survey department retraced the overall boundary and performed a topographic survey of the site.
Everyone in Houston knows how much traffic there can be on any given day at any given time. Roadways are changing in Missouri. Diverging Diamond Interchanges (DDIs) is the new, innovative, and complex design. Drivers are diverted to the left side of the road prior to merging onto the roadway.
This innovative design is saving lives. According to Science Daily, “By analyzing more than 10,000 crash reports of DDIs in Missouri and in states that have adopted the designs, civil engineers have determined that overall crashes decreased by more than 50 percent nationwide. Additionally, fatal and injury crashes decreased by more than 70 percent, proving these cutting-edge designs are efficient, effective and life-saving.”
Diverging Diamond Interchanges divert drivers that are departing roadways by calling for traffic to drive on the left side, which improves safety by removing left-turning conflicts. Traffic flow is also improved.
Although this may look like an unusual design, it helps with the flow of traffic and is safer for drivers. With this taking place around Missouri, there’s no doubt that it will follow in other states as well.
Source: Science Daily