In 2006, Caldwell Companies sought to create Towne Lake as a community where residents and services could be connected by water. Their vision included boat docks and marinas augmenting traditional walking trails to navigate a vibrant residential community. EHRA was the perfect partner to take Caldwell Companies’ vision and create this livable suburban oasis.
Identified as a top priority during the development of the District’s Parks Master Plan, this portion of trail was the first phase of over two miles of planned trails to provide connectivity and recreation for District residents.
EHRA completed preliminary engineering, phase one environmental site assessment and schematic development for the widening of Northpark Dr. between US 59 and Woodland Hills Dr. EHRA also provided program management, drainage analysis and design, traffic engineering, environmental documentation and schematic design for the roadway, as well as grade separation at the Loop 494/UPRR railroad crossing.
EHRA conducted traffic operations and access management studies for the Northpark Dr. corridor. This corridor is approximately 2.2 miles long and has major signalized and unsignalized intersections and driveways that access various subdivisions and industrial developments. These studies laid the groundwork for the widening of Northpark Dr. from a four-lane boulevard cross-section to a six-lane boulevard complete street. The new street design includes low impact development drainage, conventional drainage, a grade separation at the UPRR crossing with mechanically stabilized earth retaining walls, two at-grade crossings for bi-directional frontage access, reconstruction of two concrete bridges over a diversion channel, intersection improvements, a roadway-adjacent multiuse path and traffic signal improvements.
Drainage analysis and design included hydrologic and hydraulic studies of both existing and proposed conditions to demonstrate that proposed project components would not adversely affect the 100-year floodplain in the area. The roadway and traffic designs contained horizontal and vertical alignments, cross-sections, plan and profile, sidewalk and bicycle accommodations, intersection layouts, traffic control plans and signing and pavement markings.
As the program management firm, EHRA coordinated with TxDOT, UPRR, the City of Houston Council District E, COH Planning and Development Department, COH Public Works and Engineering Department, Montgomery County, Harris County, HCFCD and area residents throughout the project.
The new roadway design comprises of one-half major thoroughfare, conventional drainage, a 600-ft long bridge over Willow Fork Bayou, Retaining walls and intersection improvements at FM 1463 (including traffic signals and illumination).
A 720-acre gated master planned community located off Telge Road, just north of Willow Creek. See how EHRA was involved in this project.
One cartoon image--(Rocky and Bullwinkle)-- of an unlikely train bridge is based on an astonishing real-life structure, the massive Steel Cantilever Bridge, which spans a gorge in Alaska near the Yukon border.
The Steel Cantilever Bridge was built as part of the White Pass and Yukon rail route. The route originally ran from the coast at Skagway, Alaska, north and east to Whitehorse, Yukon. The southeastern Alaskan coast has a connected line of deep fjords that provide ships protection from the open Pacific Ocean. The fjords are know as the Inside Passage. Skagway is located in the crook of mountains at the northern end of one of the fjords. Moving inland from the coast, the terrain dramatically rises up several thousand ft.
The Canadian government authorized construction of the narrow gauge railway to ease the way for prospectors. Unfortunately, the railroad ultimately did not provide much help. When gold was discovered to the west in Nome, Alaska, the Klondike Gold Rush petered out shortly after the railroad line was opened.
After that, the route provided support for mining operations. The railway was the primary route for shipping ore out of the Yukon to the port at Skagway. During the period following World War II, the railroad's use for shipping was gradually reduced as mining decreased. It stopped running altogether in 1982.
The last and current chapter of the story focuses on tourism. The sheltered fjords of the Alaskan Inner Passage were discovered by the cruise industry, and in summer several large ships would set sail for ports along the Alaskan panhandle. The railroad line was refurbished from Skagway to the town of Carcross, Yukon, and reopened in 1986. (The segment from Carcross to Whitehorse is no longer used.)
Construction of the original line featured heroic feats. In those days there was no Autocad or smartphones, and use of engineered plans was limited. Constructors lacked detailed survey, and they staked the route as they built it. One of the biggest challenges was crossing the canyon near the top of White Pass. The resulting bridge was a marvel of its time, with unique triangular trusses that join to form a three-hinged structure. Calculations were limited not so much by theory but by the difficult process of calculating. With a slide rule, you can only do so many finite element analyses (i.e., none). The original hand-drawn blueprints had stress tables for the truss members, and the analysis was governed by basic assumptions with no partial fixity or secondary moments.
The overall approach was simplified by detailing three hinges, two at the base and one in the middle. The bridge seems to connect at a sharp point in the middle, in part to make the analysis easier by forming a center hinge. The two sides are evaluated as two separate simple spans.
Without advanced analysis, nineteenth century bridge engineers relied on "form follows function." Back in the day, a bridge was detailed to get the forces from point A to point B with no muss or fuss. There was no ability to design "startle structures" with leaning pylons or gaps in arches. But the resulting bridge was dramatic and startling anyway.
The last train crossed in 1969. That year, the tracks were rerouted to a nearby tunnel and less ambitious girder bridge. Riding the train today, you can see the old truss bridge as the train crosses the gorge on the adjacent girder bridge. For a moment, it feels like you have been transported to a cartoon. The train pulls out of its tunnel, and there is the old bridge off to the side, an astonishing sight. Parts of the timber approach trestle have collapsed, but the main triangular trusses of the steel bridge are still in tact.
Source: http://enr.com