

EHRA offered its Landscape Architectural services to complete a Parks and Trails Master Plan for the District.
The purpose of this project was to convert the existing at-grade crossing of Brazoria County Road 56 (CR 56) and State Highway 288 (SH 288) into a diamond interchange that includes a new overpass bridge and providing access to the newly developed Meridiana Development. Coordination with TXDOT, area landowners, utility companies, and Brazoria County was integral in obtaining approval and acceptance of the project. The main design challenge for this project was to accommodate double intersections on the west side of SH 288 to tie into existing access roads with two-way traffic and a new southbound on-ramp within a close proximity. EHRA coordinated with TxDOT throughout the project from preliminary concepts for the intersection and bridge through final design and construction. Each component of this project was designed in accordance with TxDOT standards and criteria.
In 2006, Caldwell Companies sought to create Towne Lake as a community where residents and services could be connected by water. Their vision included boat docks and marinas augmenting traditional walking trails to navigate a vibrant residential community. EHRA was the perfect partner to take Caldwell Companies’ vision and create this livable suburban oasis.
EHRA conducted a traffic engineering study to identify the impacts of a proposed master development located near the intersection of FM 1488 and Peoples Road in the City of Conroe.
EHRA planners, hydrologists and landscape architects worked together to propose an alternative use for the space, re-developing the basin into an amenity pond. EHRA carefully selected native plant materials for both their ability to survive in the harsh conditions of the basin as well as providing filtration for improved storm water quality.
A new computer program works smarter, not harder, to solve problems faster than its predecessors. The algorithm is designed to find the best solution to a given problem among all possible options. Whereas other computer programs winnow down the possibilities one at a time, the new program — presented July 12 at the International Conference on Machine Learning in Stockholm — rules out many choices at once.
For instance, imagine a computer is assigned to compile movie recommendations based on a particular film. The ideal recommendation list would include suggestions that are both similar to the original flick — say, in the same genre — yet different enough from each other to give the viewer a variety of choice. A traditional recommendation system would pore over an entire movie library to find films that best met those criteria and add films to its roster of recommendations one by one, a relatively slow and tedious process.
By contrast, the new program starts by randomly picking a bunch of movies from the library. Among that sample, the system keeps the movies that strike the best balance between relevance to the original film and diversity, and discards the rest. From that smaller pool, the algorithm again chooses films at random and keeps only the best of the bunch. That strategy helps the algorithm build its rec list far faster.
The new algorithm, built by Harvard University computer scientists Yaron Singer and Eric Balkanski, compiled movie suggestions more than 10 times as fast as a standard recommender system. In another trial, it devised optimal routes for cabs in New York City about six times as fast as a conventional automated dispatcher.
This program could also speed up data processing for everything from drug discovery to social media analytics, engineering and analyses of genetic data.
Source: Science News