

EHRA designed an expansion that implemented the installation of a new triplex lift station operating in conjunction with the existing duplex lift station.
A 720-acre gated master planned community located off Telge Road, just north of Willow Creek. See how EHRA was involved in this project.
The purpose of this project was to convert the existing at-grade crossing of Brazoria County Road 56 (CR 56) and State Highway 288 (SH 288) into a diamond interchange that includes a new overpass bridge. Coordination with TXDOT, area landowners, utility companies, and Brazoria County was integral in obtaining approval and acceptance of the project.
Identified as a top priority during the development of the District’s Parks Master Plan, this portion of trail was the first phase of over two miles of planned trails to provide connectivity and recreation for District residents.
Engineering design and construction phase services of water, sewer, drainage and paving for four subdivision sections and off-site channel (123 acres out of a 400 acre subdivision). There was 60-feet of elevation difference on this site and wooded lots were left in their natural state which required the installation of retaining walls.
In work that could help prevent the failure of everything from bridges to dental implants, a team led by a researcher at Texas A&M University has taken the first 3D image of a microscopic crack propagating through a metal damaged by hydrogen. They have caught the crack red-handed! Previously, the only way to analyze such a metal failure was to look at the separated pieces of a completely fractured component, which entails a certain amount of guesswork. The new research shows what is happening at the crack tip as a part begins to fracture. As a result, the team identified 10 microscopic structures that make metals stronger and less susceptible to a key environmental factor -- the hydrogen around us -- that can damage them.
Their work is published in Nature Communications. It was conducted using two powerful tools at Argonne National Laboratory's Advanced Photon Source (APS), and represents a milestone for one of those tools as the first experiment performed by researchers outside of the development team at Argonne and Carnegie Mellon University (CMU). The study took eight years to complete, primarily because it involved huge amounts of data that were difficult to analyze. The raw data for the work would fill almost 400 DVDs. Further, the data looks nothing like a 3D model of the material.
Source: Texas A&M University/Science Daily